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Abstract 

 

Several analyses can be derived from the land-change information provided by remote 

sensing image datasets. This study examines deforestation stages and spatial patterns 

information provided by two methodological frameworks (fractal analysis and data 

mining) in the Amazon rainforest and how they may be affected by two deforestation 

dataset sources (Terra-i and Global Forest Change) and extent of analysis (four 

increasing fixed grids sizes). Analysis shows that for the fractal analysis framework, the 

highest values of the output information (fractal dimension) was obtained using the 

Terra-i dataset and at the finest grid sizes. The data mining results suggest the feasibility 

of artificial neural networks for mapping spatial patterns. The use of this algorithm in 

combination with a grid size of 30720 m provided the best true model performance 

using either the GFC or Terra-i datasets (Kappa values of 0.73 and 0.70, respectively). 
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1 

Introduction 

 

The production of geospatial data related to land use and land cover changes by 

governments and civil society organizations has vastly increased during the last decade 

(Coca, 2015). Going beyond the valuable information (location, rates and absolute 

values) provided by these datasets, it is important to have a better understanding of the 

spatial configurations and composition of the detected change areas at multiple spatial 

resolutions and time periods (Li and Reynolds, 1994; Turner et al., 2001). 

In the case of forested areas, zooming in to a particular region like the Amazon 

permits the visualisation of differences in the shapes (composition) and distribution 

(configuration) of deforested areas (Figure 1) (Coca, 2015). These structural aspects or 

stages of deforestation, usually denoted as “deforestation spatial patterns”, may be 

linked with known land-use processes and agents (e.g small-scale farmers, large 

plantations, cattle ranchers) that promote forest disturbances on the ground (Lambin et 

al. 2003). Moreover, Pritz et al. (2012) determined that impacts in terms of biodiversity 

(species richness) differ among types of deforestation spatial patterns. 

 

Figure 1. Relationships between four types of deforestation spatial patterns, visually 

differentiated using Google Earth Imagery, and related land-use agents. Photos provided 

by the Terra-i project (2015). 
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As a result, the identification and mapping of spatial patterns and stages in deforested 

areas is key for providing multi-level, flexible information on land use to forest 

conservation groups, land managers and related practitioners. Moreover, knowledge on 

the spatial configuration and composition of deforestation patterns assists in the 

modelling of future land-use scenarios (Coca, 2015).  

The main aim of this research was to explore techniques to map types of 

deforestation spatial patterns and stages in the Amazon rainforest from existing remote-

sensing image databases in order to contribute to knowledge on deforested landscapes. 

The specific objectives were: 

● Create cumulative maps of recent deforestation (2004-2013) from two existing 

remote-sensing image datasets (Terra-i and Global Forest Change); 

● Characterize and map types of deforestation spatial patterns by dataset using 

fractal dimension, landscape fragmentation metrics and data mining techniques; 

● Compare and discuss the results of deforestation spatial patterns and stages 

mapping techniques between and within deforestation datasets.  

          

This manuscript begins with a brief literature review about the main developments and 

concepts involved in the study of deforestation spatial patterns and associated 

techniques. Next, the study area and the main pre-processing features performed for the 

deforestation datasets are described. Two potential approaches are presented to 

discriminate deforestation patterns types in the target area. On the one hand, the five 

patterns types given by Sun et al. (2014) are mapped using fractal analysis techniques. 

On the other hand, building mostly on earlier works by the Brazilian National Institute 

for Space Research (Silva et al. 2011), four patterns types are mapped under a 

“Knowledge Discovery in Databases” (KDD) approach. The latter involves first the use of 

data mining algorithms for classification with landscape-ecology metrics. Then the 

modelling and mapping results are exposed and confronted analysing the effects of the 

grain size (spatial resolution) of the datasets, the extent (unit of analysis) and the 

approaches assessed. Finally, the main findings and gaps in the patterns mapping 

methodologies implemented are summarized, including a list of implications and 

recommendations for future research. Main programming scripts and other supporting 

information can be found in the Appendices section.  
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2 

Literature review 

 

2.1 General perspectives on deforestation spatial patterns mapping  

Several analyses can be derived from the land-change information provided by remote 

sensing image datasets (Silva et al., 2011). Among these, a collection of techniques and 

methodologies facilitate the understanding of deforested landscapes and their dynamics 

(Sun et al., 2014) (Figure 2). These have involved the use of the mining land-use patterns 

method (Silva et al., 2011), moving window analysis (Riitters et al., 2002; Zurlini et al., 

2007), graph theory (Baggio et al., 2011; Bunn et al., 2000; Minor and Urban, 2008; 

Saura and Pascual-Hortal, 2007; Maciel, 2012), the normalised spectral entropy index 

(Sun and Southworth, 2013a; Zaccarelli et al., 2012) and morphological spatial pattern 

analysis (Vogt et al., 2007). 

 

Figure 2. Some examples of methodologies for analysing spatial patterns and elements 

of deforested areas. Refer to the sources provided for further information on these 

methodologies. 

 

Of these methods, the mining land-use patterns-based analysis has been widely used not 

only to characterise the spatial configurations and composition of deforested areas, but 
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also to determine the associated agents of change (small-scale farmers, large 

plantations, cattle ranchers and road construction, among others) (Batistella et al., 2003; 

Ewers and Lawrence, 2006; Geist and Lambim, 2001; Husson et al., 1995; Mertens and 

Lambin, 1997). This method has primarily been supported by the extraction of 

landscape-ecology metrics from deforestation objects that are subsequently analysed by 

data mining techniques. Although these metrics are mainly extracted using specialised 

software for assessing landscape fragmentation such as the FRAGSTATS analysis 

package (McGarigal and Marks, 1995), most of them fail to properly describe irregular 

spatial patterns due to their Euclidean geometry basis (Sun et al., 2014). To address this 

issue, it is important to mention the recent advances and potential use of fractal analysis 

to characterise spatial stages of deforested areas or also denoted by the authors (Sun 

and Southworth, 2013b; Sun et al., 2013; Sun et al., 2014) as developed areas.  

 

2.1.1 The mining land-use patterns-based analysis  

The mining land-use patterns approach consists of the extraction of object properties 

(landscape-ecology metrics) that are then used to discriminate, through data mining 

techniques, known deforestation spatial pattern types in a target area. In accordance 

with Silva (2015), this approach can be further divided into two sub-approaches: the 

landscape object (patch) approach or the fixed grid or window aggregation approach. 

The former analyses the geometric structure by individual patches. The latter aggregates 

a set of landscape objects representing a distinct occupation pattern in a fixed grid or 

window size. Although both methods have strengths and limitations, the latter seems to 

be more feasible in computational terms than the former for application to larger areas 

(a maximum reported area of 700,000 sq. metres as opposed to 150,000 sq. metres; see 

Silva et al., 2011).  

According to Silva et al. (2011), the data mining technique involves the study of  

land-change objects, i.e. individual or aggregated closed area(s) detected in a remote 

sensing image and associated with a change in land cover. The authors’ method consists 

of two parts, both illustrated in Figure 3. The first part is the training procedure, in 

which the analyst defines the spatial pattern typologies according to an application 

domain (patch or grid-aggregated patches), linking them to established knowledge 

about the agents that cause land change.  The expert selects a training set of land-change 

objects and labels each one according to the different types of spatial patterns that they 
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represent. Each object has a set of geometrical properties that can be described using 

landscape-ecology metrics. The output is a training set of objects, where each member 

has a label and a set of numerical features. The training set is used to build a data mining 

algorithm for classification (decision-tree classifier), whereupon each type of land-

change object is discriminated based on its patch metrics.  

 

Figure 3. Workflow of the mining land-use patterns-based method. Source: Silva et al. 

(2011). 

 

The second step of the method is the data-mining procedure. The analyst computes a set 

of numerical attributes for all land-change objects using landscape-ecology metrics. The 

data mining algorithm for classification (built in the training procedure) maps each land-

change object to one of the user-defined spatial patterns. Finally, the user performs an 

analysis of the spatial and/or temporal trends of the resulting land-change patterns.  

Figure 4 illustrates a case study in a 190,000 sq. km area in the Brazilian Amazon 

where the above methodology was implemented. For this case, using the patch grid-

aggregation approach at a fixed grid of 10 km x 10 km, six spatial patterns of 

deforestation were initially identified. All unlabelled land-change objects were 

automatically classified using a built decision tree classifier created by a training set. 
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Figure 4. Example of the application of the mining land-use patterns-based analysis. Six 

spatial patterns (A) were identified at the unit of analysis (10 x 10 km) from PRODES 

deforestation dataset (30 m). Using a built decision tree (B) these patterns were 

discriminated for multiple periods (C).  Colours by pattern box in (A) are related with 

grid colors in (C). Adapted from Gavak (2011). 

  

2.1.2 The fractal analysis approach 

Fractal geometry can provide a mathematical description for many natural forms such 

as coastlines, mountains, and clouds. Originally introduced by Mandelbrot (1975), 

fractals are defined as objects that display self-similarity at various scales and can be 

usually characterized by computing the fractal dimension (FD).  

Although there are different approaches proposed to estimate the FD, they can be 

grouped into three major categories: the box-counting methods, the variance methods, 

and the spectral methods (Li et al., 2009). Of these approaches, the box-counting 

approach, which is widely used due to its simplicity and automatic computability 

(Peitgen et al., 1992 cited by Li et al., 2009), was recently proposed for analysing 
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spatiotemporal dynamics of forest clearings from remote-sensing image datasets  (Sun 

and Southworth, 2013b; Sun et al., 2013; Sun et al., 2014).  

These studies on spatio-temporal dynamics have computed the FD from multi-

temporal Landsat (30m) forest/non-forest maps in the Western Amazon. After assessing 

several techniques to determine an optimal and consistent method to cartographically 

represent the fractal structures using AOIs (areas of interest) in heterogeneous 

landscapes, the authors claimed the high feasibility of the bottom-up method using a 

fixed-grid scans strategy. According to this method, a series of regular grids of 

decreasing box sizes are recursively superimposed over a target object (deforested 

area). The counting, or the number of boxes occupied by the target object, is recorded 

for each box (Sun et al., 2013).  Five deforestation stages (Figure 5) were characterised 

using this approach. From a practical point of view, the fractal dimensions extracted can 

be used to indicate the spatial fill capacity, or the extent to which deforested areas can 

occupy the entire box area. The more clearings and conversion in a grid area, the closer 

the fractal dimension approaches the value of 2. 

 

Figure 5. Types of deforestation stages (A) according to the fractal dimension D 

computed using the box-counting approach and bottom-up method. These stages were 

mapped on multi-temporal Landsat forest/non-forest maps in the Western Amazon (B). 

Adapted from Sun et al. (2014). 
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2.2 Data mining 

As the amount of data available has increased considerably in last decades, the need is 

imminent to transform these into useful information and knowledge (Han and Kamber, 

2006). A common technique that addresses this need is data mining (DM). Data mining 

is the process of using one or more computer learning techniques (algorithms) to 

automatically analyse and extract knowledge from data contained within a database 

(Roiger and Geatz, 2003). 

The scientific method behind the data mining process, denoted as Knowledge 

Discovery in Databases (KDD), includes a methodology for extracting and preparing data 

as well as making decisions about actions to be taken once data mining has taken place 

(Roiger and Geatz, 2003) (Figure 6). KDD includes multidisciplinary activities that aim 

to develop new information from existing databases, and its major application areas are 

in marketing, fraud detection, telecommunication and manufacture (Fayyad et al., 1996).  

 

Figure 6. An overview of the steps in the KDD Process. Source: Fayyad et al. (1996). 

 

2.2.1 Data mining algorithms 

A data mining model can be either predictive or descriptive in nature (Dunham, 2002). 

Figure 7 shows some of the common data mining tasks for each model type. 

A predictive model consists of predictions about data values using known results 

found from existing data. A descriptive model, on the other hand, involves patterns or 

relationships in data. Unlike predictive models, descriptive models allow to explore the 

properties of the data examined rather than predicting new properties (Dunham, 2002). 
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Figure 7. Data mining models and tasks. Adapted from Dunham (2002).   

 

In the predictive models group, classification algorithms (also designated as classifiers) 

are perhaps the most familiar and most popular data mining technique (Dunham, 2002). 

This technique assigns a known “class” to unlabelled instances. No one classification 

technique is always superior to the other in terms of classification accuracy. However, 

there are advantages and disadvantages to the use of each (Dunham, 2002). 

In the case of research on spatial pattern type mapping in deforested areas, the 

classification task has been limited to decision tree (DT) classifiers (Silva et al., 2011). 

The wide adoption of DTs can be attributed to their easy interpretation, low data 

preprocessing requirements (features do not require normalisation or scaling), and 

computational efficiency. However, there are others robust algorithms that should also 

be tested due to their high performance when associating complicated information with 

target attributes without any constraints on the sample distribution. Among these 

algorithms, Artificial Neural Networks (ANNs) are powerful tools that improve their 

performance by ‘learning,’ a process that may continue even after the training set has 

been analysed. Some disadvantages of ANNs are difficulty in explaining their workings 

to end users (unlike decision trees), overfitting and failing to converge in the learning 

phase (they do not guarantee convergence or optimality) (Dunham, 2002). 

 

2.2.1.1 Decision trees  

DTs, initially designated as “discrimination nets” by Feigenbaum and Simon (1963), are 

defined as hierarchical models composed of decision rules that recursively split 

independent features into homogenous zones (Myles et al., 2004). DTs combine features 

in a hierarchical manner, the most important being the one located at the root of the 

tree. Each node in the tree refers to one of the features. Each leaf is assigned to one 

target class representing the most frequent class value.  Additionally, the leaf holds a 
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probability vector that indicates the probability of a target class occurring (Lee and Park, 

2013) (Figure 8). 

 

Figure 8. Structure of a decision tree with the probability of occurrence by class.  A: 

Source: Grobbelaar and Visser (2015).  

 

Among DT algorithms, the C4.5 classifier (Quinlan, 1993) is commonly used in GIS (Lee 

and Park, 2013) and remote sensing (Peña et al., 2014) applications. C4.5 builds a 

decision tree using the concept of information entropy. The gain ratio is used as an 

attribute selection measure to build a decision tree. This step removes the information 

gain bias and thus gives preference to attributes with few values rather than those with 

many values  (Das, 2015, p. 315). In order to avoid overfitting, C4.5 employs post-

pruning which allows building smaller tree models that perform better classification 

accuracy on new data sets as opposed to just the training data set.  The parameter that 

defines the level of pruning is called confidence level (CF). The default confidence limits 

used by C4.5 is 25% (Cho and Kurup, 2011). 

 

2.2.1.2 Artificial Neural Networks  

Artificial Neural Networks (ANNs), initially termed “nervous activity” by McCulloch and 

Pitt (1943), have gained attention in ecological and remote sensing as a powerful, 

flexible, statistical modelling tool for uncovering patterns in data (Olden and Jackson, 

2002).  

There are many types of ANNs that differ in basic architecture (see Bishop, 1995; 

Ripley, 1996). The feed-forward network (FNN) with the backpropagation algorithm is 

the most common ANN architecture. FNN’s network structure allows information to 

flow in only one direction, from input to output.  Among different FNNs, Multilayer 
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Perceptron (MLP) is widely used.  In short, a FF-MLP consists of an input layer, one or 

more hidden layer(s) and an output layer (Figure 9). During the training process, 

multiple weights are assigned to links connecting nodes across various layers. The 

overall aim is to find weights that minimize a cost function (usually the error) between 

real observations and predictions. This aim is embedded in the backpropagation 

algorithm, which computes the cost function on all the training pairs. The weights are 

then adjusted iteratively to fit the desired output.   

 

Figure 9. A typical FF-MLP neural network with a single hidden layer architecture with i, 

j, and o neurons in the input, hidden, and output layers, respectively. fi stands for the 

activation function. w represents the weights. Xi stands for the input variables. Yi 

represents the output variables.  Source: Bianconi et al. (2010). 

 

In mathematical terms, a single hidden-layer MLP artificial neural network can be 

represented as:  

    (1) 

 

where  is the input, is the output, the number of variables,  is the number of neuron 

units in a single hidden layer,  is a linear or logistic function, and  are the 

weights of the link between the input layer and the hidden layer, and and  are the 

weights of the link between the hidden layer and the output layers (Yan, 2008).  
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3 

Methodology 

 

3.1 Study Area 

The target area was the Amazon region delineated by RAISG (2012) (Figure 10). From 

this boundary, the humid forest ecoregion delineated by Olson et al. (2001) was selected 

due to a high consistency of the deforestation datasets used and availability of previous 

studies documenting various spatial configurations and composition of deforested areas, 

mostly on the Brazilian side. 

 

Figure 10. Amazon region delineated by RAISG (2012) including the WWF (2009) Major 

Habitat Types. 

 

3.2 Deforestation datasets 

Two multi-temporal deforestation datasets, Terra-i (Reymondin et al., 2012) and Global 

Forest Change (GFC) (Hansen et al., 2013), with different spatial resolutions (250m and 

30m, respectively) were used. Both datasets have supported the exploration and 

identification of temporal and spatial trends of deforestation at large geographical 

extents (continental and global, respectively). Further details about their main features, 

including the version acquired for this study, are summarised in Table I.  
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For purposes of this study, a binary forest/non-forest map was created for each 

dataset. Each map assumed that cumulative detections from 2004 to 2013 were non-

forest. This adjustment to a common period between datasets improved comparisons 

and consistency for a posteriori  analyses performed from the forest/non-forest maps. 

 

Table I. Features and versions for the two deforestation datasets (monitoring systems) 

used in this research. 

Feature Terra-i Global Forest Change (GFC) 

Spatial 

resolution (in 

degrees and 

nominal value 

in metres) 

0.00208333 degrees 
 

250m 

0.00025 degrees 

 

30m 

Temporal 

resolution 

16 days Annual 

Satellite(s) MODIS (MOD13Q1) and 

TRMM (3b42 v7) 

Landsat (Circa Landsat 7 mosaics) 

Modelling 

approach 

Bayesian neural networks to 

predict vegetation changes 

based on (a) vegetation index 

(MODIS) and (b) 

precipitation data (TRMM) 

Landsat time-series and algorithm 

(bagged CART). Changes based on 

image interpretation on-screen 

training data (QuickBird and 2000 

Tree cover from Landsat and MODIS) 

Model steps 

 

TRAINING: 2000-2003 (using 

MODIS vegetation clustering) 

MODELING: 2004-Present 

TRAINING: 2000 (using %tree cover 

threshold <25% not forest) 

MODELING: 2001-2013 

Version used Version 2004 to Feb 2015 Version 1.1 (2001-2013) 

  

The term “deforestation” in these datasets, indicated here by non-forest, represents 

replacement of tree cover (planted or natural) by anthropogenic factors (e.g. cultivated 

pastures, agricultural fields, urban areas and/or human settlements) or by natural 

events (e.g. flooding, fire).  The clarification is relevant as neither the Terra-i nor GFC 

methodologies is yet able to fully discriminate human disturbances in natural forest 

cover. Further implications of these definitions are given by TNC (2015). 
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3.3 Data preparation 

Datasets were downloaded and masked with the target area and cumulative 2004-2013 

forest/non-forest maps were generated. Both Terra-i and GFC forest/non-forest maps 

were reprojected from their native geographical projection (WGS84) to the Interrupted 

Goode Homolosine (IGH) projection using nearest-neighbor resampling. The cell sizes 

assigned in the reprojection for the former and latter datasets were 240m and 30m, 

respectively. These reprojecting values, which allowed 1 Terra-i pixel to be equated with 

8 GFC pixels and aligned the GFC reprojected pixels based on the Terra-i reprojected 

pixels, ensured consistent computation of the fractal dimension and extraction 

FRAGSTAT-like metrics according to the fractal analysis and mining land-use patterns-

based methods described in the next sections.  

The IGH projection was selected due to its minimized distortion and equal-area 

characteristics, which lend to its visual appeal and make it a good choice for analysis 

purposes (Steinwand, 1994). Additionally, this projection has proven feasible at regional 

levels as demonstrated by previous studies in Latin America (Clark et al., 2012, Clark et 

al., 2010, Sanchez et al., 2012).  

 

3.4. Spatial deforestation pattern mapping methods 

3.4.1 Fractal analysis approach     

The box-counting approach with the bottom-up method using fixed scan grids, proposed 

by Sun et al. (2013) and Sun et al. (2014), was implemented to compute the fractal 

dimension from Terra-i and GFC forest/non-forest projected maps. In practice, a series 

of grids was recursively generated within an AOI box which had been laid over non-

forest areas. In each iteration , the minimum  squares of side  (pixels, in this 

case 1 pixel = 30m or 240m depending on the dataset) needed to encompass the 

deforested areas were recorded, where . After defining an optimal value 

of maximum iterations , that maintained stable results (Encarnação et al., 2012 cited 

by Sun et al. (2014), the fractal dimension  was estimated by linear regression:  

    (2) 

where  is a constant.  The bottom-up method with the fixed scan strategy, used to 

represent fractal structures over large and heterogeneous landscapes, pixelates the 

entire landscape and then calculates the fractal dimension of each pixel.  In this method, 
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it is important to designate the pixel size (the length of one side of the pixel) before 

computing  because the box-counting method relies on dividing pixels recursively, 

which can lead to inexact divisions (Sun et al., 2014).   

 With the aim of determining the effect of various grid sizes (pixels) on fractal 

dimension computation, four increasing matrices of 15360 m × 15360 m,  30720 m × 

30720 m, 61440 m x 61440 m and 122880 m x 122880 m non-overlapping fixed grids 

were superimposed on the reprojected Terra-i and GFC forest/non forest maps. These 

sizes were determined based on considerations of Landsat and MODIS image projection, 

which have minimum pixel sizes of 30 m and 240 m, respectively. Defining  as the 

optimal value for interactions , the finest grid, which is given after recursively dividing 

the maps (  or in this case 25 = 32) to calculate the fractal dimension, has more 

than 1 pixel (Table II).  For instance, a grid size of 7680 m, which is equivalent to 32 and 

256 Terra-i and GFC pixels, can be exactly divided by  , using  as the 

maximum value possible for perfoming the box counting process.     

 

Table II. List of grid sizes assessed and number of pixels analysed by dataset at the finest 

grid, with m = 5 to compute the fractal dimension using the box counting technique. 

 
Grid  
size (m) 

Numbers of pixels (length) by grid                         
by dataset 

Numbers of pixels analysed at the 
finest grid  (m = 5 or 25 = 32)                       

by dataset 

Terra-i 
(240m) 

GFC 
(30m) 

Terra-i 
(240m) 

GFC 
(30m) 

15360 64 512 2 16 

30720 128 1024 4 32 

61440 256 2048 8 64 

122880 512 4096 16 128 

 

3.4.2 The mining land-use patterns-based approach    

Based on earlier work by the Brazilian National Institute for Space Research (Silva et al. 

2011) and derived researches mainly by Saito (2011) and Gavak (2011), the mining 

land-use patterns-based approach was implemented to map deforestation patterns in 

the study area. Figure 11 illustrates the workflow of this methodology adapted for this 

research under a KDD process scheme. 
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Figure 11. Workflow of the mining land-use patterns-based method using fixed grids 

strategy implemented in this research. Adapted from Silva et al. (2011). 

 

3.4.2.1 Data 

The input data consisted of forest/non-forest maps derived from preprocessed 

(reprojected) deforestation datasets. Using the grid-aggregated patches approach, the 

four increasing, non-overlapping fixed grid sizes in which the fractal dimensions were 

computed were also superimposed on this analysis. As a result, each database 

containing grid-based forest/non-forest objects was split into two subsets by dataset 

and grid size. One subset was used for a supervised learning, where a set of 

representative samples was collected from common pattern spatial typologies identified 

across all fixed grid sizes. The remaining grid-based objects were used as target data to 

classify automatically using the data mining models trained by dataset and grid size. 

 

3.4.2.2 Human-based training phase 

Four spatial pattern types were initially defined and associated with potential land-use 

activities across all fixed grid sizes assessed from preprocessed Terra-i and GFC 

forest/non-forest maps (Table III).  The selection of these deforestation spatial pattern 

types was supported with previous mining pattern analyses that used the fixed grid scan 
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strategy on a deforestation dataset derived from Landsat remote-sensing data (30m) in 

the Brazilian Amazon (Gavak, 2011; Saito, 2011; Saito et al., 2011).  

 

Table III. Description of the deforestation spatial pattern typologies using the minor 

fixed grid size (15360 m x 15360 m) assessed in the study area. Appendix 2 contains the 

visualisation for the remaining grid sizes not illustrated in this table.  

Pattern 

Visualization using the 15360 m x 15360 m 

grid size by dataset (aggregated 2004-2013 

forest/non-forest map) 

 

Description  
(scale 

1:75,000) 

Land-use agents 

associated / Spatial 

distribution / 

Accessibility 

(transport 

infrastructure)  
Terra-i 
(240 m) 

GFC 
(30 m) 

Diffuse 

extensive 

  

Small-scale 

clearings 
Smallholder 

subsistence 

agriculture / 

Dispersed or scatter 

distribution / Low 

accessibility 

Diffuse 

extensive 

  

Small to 

medium scale 

(irregular or 

geometric) 

clearings 

Roadside or riverside 

colonization by 

spontaneous 

migrants / Clustered 

distribution / Low to 

medium accessibility 

Geometric 

  

Large-scale 

(geometric) 

clearings 

Modern and 

industrial sector 

activities / Clustered 

distribution / 

Medium to high 

accessibility 

Multi- 
directional  

  

Corridor-like 

clearings 

(irregular or 

geometric) 

perpendicular 

to a main 

corridor 

clearing 

Planned resettlement 

schemes (mostly in 

the Brazilian 

Amazon) / Clustered 

and/or scatter 

distribution / High 

accessibility 

 

After identifying and describing common pattern typologies across all grid sizes, a 

strategy for collecting representative samples by pattern was performed in two steps. 

First, a set of fifteen representative grid-based objects organised by pattern (60 samples 

in total for the four patterns) was manually collected using the largest grid size (122880 

m). A key criteria for selecting this initial set of samples was visual agreement in 

representation of the pattern between Terra-i and GFC forest/non-forest maps. Second, 
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samples were collected for the remaining fixed grid sizes using a stratified sampling 

strategy. A sample of the target grid size was selected from the sample site in a major 

grid size (Figure 12).  

 

Figure 12. Example from the Terra-i dataset of the sampling strategy. A labelled train set 

of the geometric pattern was generated and later used in the data-mining phase. 

 

With the set of samples collected across all pattern typologies, grid sizes and datasets, a 

group of thirteen FRAGSTAT-like metrics at class level were extracted using the grid-

based object as the unit of analysis and non-forest as the target class. These metrics 

were selected on the basis of results of reference studies by Gavak (2011) and Saito, 

(2011) who discriminated multiple deforestation pattern typologies with the grid-based 

approach and data mining techniques in the Brazilian Amazon. To complement these 

metrics, the fractal dimension (FD) determined in the fractal analysis approach was 

added to the FRAGSTAT-like metrics database according to the grid size and dataset. 

From this metric, a new variable was derived and added to each database under the 

assumption of a close relationship between FD and proportion of areal measures.  The 

resulting variable was the ratio between the fractal dimension and the FRAGSTAT-like 

metric related with the percent of land occupied by the non-forest class. 

Appendix 3A contains a basic description and definition (for the purposes of this 

research) of the set of FRAGSTAT and fractal-like metrics selected and extracted from 

grid-based objects according to grid size and dataset. Appendix 3B describes further 

details about their formulas and ranges. 

 

3.4.2.3 Data mining phase 

There were two types of datasets used in this phase. One, the “gold-standard” (human-

labelled) dataset, prepared by grid size and dataset, was used to build data mining 
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algorithms models. Another set, consisting of the remaining unlabelled grid-based 

objects, was then automatically classified within the four spatial pattern typologies 

(described in Table III) using the built models with the best performance (Kappa value) 

from the gold-standard set. 

Regarding the data mining algorithms, the feasibility of C4.5 decision trees and 

feed-forward multilayer perceptron ANNs with back propagation methods was assessed 

to classify the four spatial pattern typologies identified from Terra-i and GFC forest/non-

forest maps at multiple grid sizes. The workflow of the data mining phase was divided 

into five sub-phases: data preprocessing, model construction (learning), model 

evaluation (accuracy), model sensitivity analysis and model use (classification). The first 

three steps were examined for all C4.5 decision trees and artificial neural networks 

models generated. The remaining steps (model sensitivity analysis and model use) were 

exclusively performed for the built neural networks models with the best performance 

according to the Kappa value. The exclusion of the C4.5 decision tree models in those 

steps was on the basis of using exclusively them as reference to proof or reject the 

goodness of neural networks for discriminating deforestation patterns. 

 

3.4.2.3.1 Data preprocessing 

Preprocessing (normalisation) of input data is a particularly important step for built 

neural networks models with backpropagation. According to Kim (1998), input and 

output vectors for backpropagation need to be normalised properly in order to achieve 

the best performance of the network. The author claimed if the activation function used 

is the standard sigmoid (which was the case in this research) each input should be 

normalized between 0 and 1. The formula for this normalization is given by Eq. (3) 

 

     (3) 

 

where ,  and 

 are the input patterns. In Eq. (3),  denotes the normalized value of 

the unit  of input vector , and  denotes the original 

value of the input  in the pattern  (Kim, 1998). 
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3.4.2.3.2 Model construction 

Several architectures can be derived from the two data mining algorithms tested.  As 

part of the algorithm feasibility assessment, the C4.5 structure used by previous pattern 

mapping methodologies (Silva et al., 2011) was confronted with FF-MLP ANN 

architectures according to training set, grid size and deforestation dataset. 

In the case of the C4.5 decision tree, the traditional settings given by previous 

pattern mapping used a default confidence level (CF) of 25% for post-pruning. The 

smaller the confidence limit, the higher the chances of pruning and vice versa (Cho and 

Kurup, 2011).  

Due to the lack of studies implementing neural networks for mining deforestation 

spatial patterns classification, this research implemented the grid-search procedure 

with k-fold cross validation for selecting the candidate parameters in the neural 

networks (Castro et al., 2013, p. 239). The weight decay and hidden nodes number were 

the parameters tuned according to the type of neural network implemented. Based on 

the suggestion by Ripley (1996, p. 162), the weight decay when a small number of inputs 

is scaled to range from 0 to 1 is usually set between  0.001 and 0.1. A typical number of 

hidden nodes in a single hidden layer can range from 5 to 100 (Yan, 2008).  For this 

study, the number of nodes in a single hidden layer was changed from 1 to 50 by 1.  Five 

values for weight decay were used as a basis for exploration: 0.00001, 0.0001, 0.001, 

0.01 and 0.1. As result, there were 250 different parameter combinations of the values 

for weight decay and the number of hidden-layer nodes. 

 

3.4.2.3.3 Model evaluation 

The performance of each model (also denoted as surrogate model in this step) was 

evaluated using a five-fold cross validation with 40 iterations, similarly to Beleites and 

Salzer (2008) who also used this setting for a small training set size with the presence of 

extreme values. Besides informing the surrogate models’ performance for C4.5-based 

and neural networks-based algorithms applied on different training sets, the iterated k-

fold cross-validation technique allowed exploration of the stability of each surrogate 

model and identification of optimal parameter combinations for the neural networks 

algorithm.  

In the cross-validation technique, k indicates the number of equal subsets that 

split a full training set. For each run, the training process is run on k-1 subsets and the 
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validation is done on the remaining subset. An iteration refers to a permutation of k-1 

subsets of the k subsets, followed by a repetition of the same validation scheme. For 

instance, under a five-fold classification with 40 iterations, the training set was split into 

5 parts, 80% training and 20% test, repeated 40 times. 

Both the comparison of data mining algorithms and selection of the best 

parameter combinations for the neural network models assessed was performed using 

the Kappa (κ) statistical metric as the error measure. This metric was selected based on 

its feasibility for categorical data (Williamson et al., 2000) and also due to its previous 

use in the reference patterns mapping studies (Gavak, 2011; Saito, 2011) that used the 

C4.5 algorithm. A value of 0 for κ indicates disagreement unlikely to be due to chance, 

and a value of 1 indicates perfect agreement (Williamson et al., 2000). In addition to 

Kappa, the overall accuracy, which is usually considered as an overestimation as it does 

not account for agreements that would have occurred by chance, was explored as a 

complementary reference measure for the correctness of classification. The use of both 

metrics together has been reported in the machine learning literature for ecological and 

land cover applications (Lippitt et al., 2008). 

 

3.4.2.3.4 Model sensitivity analysis 

The sensitivity analysis is a key procedure in model development to detect input-output 

dependencies.  In the case of artificial neural networks, the generalisation of ANNs as 

measured by an error function (the Kappa metric in this research) depends upon the 

ratio of the number of training data to the number of ANN parameters, and the ANN 

parameters depend upon the number of input variables (Yan et al., 2012, p. 255). It is 

important to note that as ANNs are a data-driven approach rather than a statistical 

approach, the important inputs are selected based on the performances of ANN models 

or by sensitivity analysis using several techniques such as tested by Olden et al. (2004). 

In Olden et al. (2004), the connection weights method was highlighted as the best 

methodology for accurately quantifying importance of variables. 

The connection weights algorithm, originally proposed by Olden and Jackson 

(2002), calculates the sum of products of final weights of the connections from input 

neurons to hidden neurons with the connections from hidden neurons to output 

neuron(s) for all input neurons. The relative importance of a given input variable can be 

defined as (Olden et al., 2004):  
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    (4) 

where  is the relative importance of input neuron , is sum of the product 

of final weights of the connection from input neuron to hidden neurons with the 

connection from hidden neurons to output neuron,  is the total number of hidden 

neurons, and  is output neuron(s). This approach is based on estimates of final network 

weights obtained by training the network.  One of the added advantages of the 

connections weights method is that it distinguishes if the input has a positive or negative 

effect on each target output (Yan et al., 2012). 

 

3.4.2.3.5 Model use 

The final step in the data mining phase used the best fitted ANN models to automatically 

classify unlabelled sets distributed in the grid sizes and deforestation datasets assessed. 

Each unlabelled observation contained the same normalised features (FRAGSTAT and 

fractal-like metrics) used in the training set. The total number of grid-based objects 

classified was reported for the whole target study area. Additionally, in order to 

approximate to the true performance of the best model among the grid sizes assessed 

for each dataset, a basic balanced sampling scheme was performed that consisted of 30 

samples (double the amount used for training) by pattern from the classified unlabelled 

dataset. This amount was empirically selected and supported by the reference mining 

pattern study by Saito (2011), which validated the C4.5 models using a random 

unbalanced sample of 90 grid-based objects. 

Finally, following the procedures of reference studies by Gavak (2011) and by 

Saito (2011) who also used the mining land-use patterns-based approach, in this 

research was uniquely present and visualise the fitted model(s) with the grid size 

holding the best Kappa value. 

   

3.5 Software and implementation 

Quantum GIS v.2.1.4 was primarily used for vector and raster operations (masking 

datasets with the target region and creating the forest/non-forest maps) as and to 

produce cartographical outputs. This software also assisted in the visual selection of the 

target pattern typologies, the samples of which were then used to create the training 
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sets by grid size for each dataset. The grid sizes vectors (also denoted here as fishnets) 

were created using the Geospatial Modelling Environment tool v.0.7.2 (Beyer, 2015). 

R software v.3.2 was used for extracting the FRAGSTAT and fractal-like metrics 

from labelled and unlabelled grid-based objects across all grid sizes and datasets. 

FRAGSTAT-like metrics were selected using FRAGSTAT v.4.2 (McGarigal, 2015), called 

within an R code. Part of the FRAGSTAT settings empirically configure an edge depth 

value equal to 0 m to compute edge-related metrics. For the FD, this value was extracted 

using the raw programming codes provided by Sun et al. (2014). After merging both 

FRAGSTAT and fractal-like metric types by grid size for each deforestation dataset, an 

exploratory analysis using box-plots was performed over the normalised metrics for 

each training set. This analysis allowed visual inspection of each variable’s behaviour by 

grid size by deforestation dataset.  

Data mining projects were run using the caret v.6.0-52 R package (Kunh, 2015), 

which contains multiple preprocessing functions (normalisation), algorithms (e.g. C4.5 

DTs and FF-ANNs), model evaluation techniques (grid-search procedure with iterated k-

fold cross validation) and tools and statistics (overall accuracy and kappa metrics) for 

visualising and checking the models’ behaviour. For the ANN models, the default settings 

for certain model parameters by the caret R-package were maintained for range (0.7) 

and modified for maximum number of iterations (5000) and maximum allowable 

number of weights (2000). The latter modifications were based on preliminary tests 

over the most complex ANN architectures (hidden-layer node numbers = 50), which 

required the modified values in order to converge.  The sensitivity analyses were 

performed independently using the NeuralNetTools v.1.3.1. R-package (Beck, 2015), 

which performed the connection weight method. 

Finally, R software was also used to export the classification results by fishnet for 

each dataset. The results were then used to visually assess the spatial distribution of 

pattern typologies using QGIS. All cartographical outputs of this research maintained the 

IGH projection. The main R programming codes can be accessed in Appendix 4. Parallel 

processing using the doParallel v.1.0.8 R package (Weston, 2015) was implemented for 

efficient processing of the large databases created and/or manipulated in this study. 

Additionally, to produce reproducible results, the set.seed function in R was added to all 

code sets. This function guarantees that the random numbers generated in each code are 

the same for each run.   
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4 

Results 

 

4.1 Fractal analysis approach     

Figure 13 illustrates the percent contribution of each deforestation stage out of all grid-

based objects analysed, arranged by grid size for each dataset. An effect of the extent of 

the unit of analysis (grid-based object) on the presence or absence of the five 

deforestation stages was observed. For instance, the presence of the type 4 (rapid 

growth and metastatic consolidation) and type 5 (clearing consolidation) deforestation 

stages was only apparent in the grid-based objects at 15360 m and 30720 m grid sizes. 

The Terra-i dataset had a higher proportion of type 5 deforestation stage than the GFC 

dataset. In terms of fluctuations, the type 1 (no or trivial clearing areas) and type 2 

(dispersed clearings areas) stages presented the largest changes by grid size, a trend 

that was especially evident in the GFC forest/non-forest maps. The maps that illustrate 

the spatial distribution of the five deforestation stages by grid size for each dataset are 

presented in Figure 14.  

 

Figure 13. Contribution of the deforestation stages proposed by Sun et al. (2014) to all 

grid-based objects, aggregated by four grid sizes and two deforestation datasets. 
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Figure 14. Types of deforestation stages proposed by Sun et al. (2014) implemented in 

the study area over four grid sizes (each row) and two deforestation datasets (Terra-i, 

left column; GFC, right column).  
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Table IV summarises all overlapping grid-based objects analysed by grid size for each 

deforestation stage derived from the Terra-i and GFC forest/non-forest maps. It also 

details the percent of grid-based objects with and without spatial agreement with regard 

to deforestation stage between datasets. The type 1 stage represented the largest 

number of grid-based objects with spatial agreement between the Terra-i and GFC 

deforestation stages maps in all grid sizes assessed. In contrast, almost a third of the 

overlapping objects disagreed in deforestation stage type, mostly for the type 1 and type 

2 categories of both datasets (not shown in Table IV). 

 

Table IV. Total number and distribution of grid-based objects with and without spatial 

agreement on deforestation stages, by dataset and grid size. Deforestation stage types 

without any spatial agreement are denoted by a hyphen (-). 

 
Grid  
size (m) 

Distribution (%) of grid-objects 
 with and without spatial agreement   

by deforestation type  

Total 
overlapping 
grid-based 

objects Type 1 Type 2 Type 3 Type 4 Type 5 Disagreement 

15360 62.46 7.19 1.78 0.68 0.02 27.87 28427 

30720 60.70 8.38 1.92 0.39 - 28.62 7984 

61440 56.02 11.47 1.89 0.24 - 30.38 2067 

122880 49.62 15.41 2.07 - - 32.89 532 

 

4.2 The mining land-use patterns-based approach 

4.2.1 Exploratory analysis of inputs variables in train sets 

A series of box plot charts arranged by conceptual category (Neel et al., 2004) allows for 

approximation of the behaviour of input variables (metrics) in training sets by pattern 

typology for each grid size and dataset. The main results of this analysis can be accessed 

in the Appendix 5. Overall, all metrics presented different behaviours, being identified 

those with potential for discriminating the target patterns typologies.  

 

4.2.2 Model evaluation 

Four hundred and eight models (400 ANNs and 8 C4.5 models) were evaluated. The 

large dominance of ANN models, due to the hyperparameter optimization procedure, 
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allowed finding the optimal parameter combinations (number of hidden nodes and 

weights decay) by grid size and dataset (Table V).  

 

Table V. Best parameter combinations (number of hidden nodes and decay) for ANN 

models that had the highest Kappa value in each grid size by dataset. The total number 

of weights and convergence values are also added as complementary features for each 

best parameter combination. 

Grid size ANN parameters  ANN features 

Hidden nodes Decay  Weights Convergence 

Terra-i GFC Terra-i  GFC Terra-i GFC Terra-i GFC 

15360 m 3 2 0.01 0.1 64 44 6.40 35.15 

30720 m 48 3 0.1 0.01 964 64 26.85 9.89 

61440 m 3 3 0.01 0.01 64 64 9.78 12.37 

122880 m 48 4 0.1 0.01 964 84 34.75 17.14 

  

Figure 15 illustrates boxplots with the distribution of Kappa values determined by 

iterated k-fold cross-validation for each best ANN parameter combination model 

confronted with the C4.5 reference model at each grid size by dataset.  

 

Figure 15. Distribution of overall accuracy and Kappa values from best ANN parameter 

optimization models and reference C4.5 models by grid size separated by dataset (left: 

Terra-i, right: GFC). Models are ranked from the highest (upper) to the lowest (bottom) 

median (black dot) metrics values. 



 38 

There was agreement between both Terra-i and GFC datasets to rank ANN models of 

grid size 30,720 m with the highest Kappa median values (1 and 0.85, respectively). 

Overall, compared to reference C4.5 models, ANNs performed better at discriminating 

the pattern typologies except for Terra-i’s 64,440 m and 122,880 m grid sizes. 

Comparing models’ Kappa median values distribution by dataset, Terra-i models had in 

general less IQR than GFC, however outliers were dominant for the Terra-i dataset 

models. Regarding overall accuracy, this metric showed similar behaviour to Kappa 

except that IQRs were narrower for both Terra-i and GFC datasets. The similar 

behaviour of both metrics corroborated 30,720 m as the optimal grid size. 

For Kappa media values, there were highly significant differences (p < 0.001) 

between C4.5 and ANN models at each grid size and dataset except for the 61,440 m grid 

size (p = 0.189) from Terra-i (Table VI).  Although median values of ANN models for GFC 

at 15360 m were higher than the same model type at 30720 m, the latter grid size was 

selected due to its lesser variation in Kappa median values (shorter IQRs in boxplots 

figures) than the former.  

 

Table VI. Statistical tests for differences in mean Kappa values between grid sizes and 

datasets. 

Grid size Terra-i  

(mean value and p-value) 

GFC 

(mean value and p-value) 

C4.5 Best ANN p-value C4.5 Best ANN p-value 

15360 m 0.89 0.95 1.23E-13 0.79 0.89 8.12E-20 

30720 m 0.82 0.95 3.89E-30 0.68 0.85 3.64E-41 

61440 m 0.84 0.85 0.189 0.70 0.78 9.77E-15 

122880 m 0.71 0.81 4.93E-18 0.56 0.64 1.08E-08 

 

4.2.3 Model sensitivity analysis 

Figure 16 illustrates the results of the sensitivity analyses for the best ANN models, in 

this case those with a grid size of 30720 m for both for Terra-i and GFC datasets. It is 

important to note that differences in the contribution of RIx values (y-axis) in each chart 

below are based on estimates of network final weights by pattern typology obtained by 

training each ANN by dataset as was previously mentioned in the methodology section. 
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Figure 16. Sensitivity analysis bar plots ranking 15 input variables (normalised 

FRAGSTAT and fractal-like metrics) for the best ANN models at a grid size of 30720 m by 

pattern typology (row) and dataset (column).  

  

According to the above charts, the contribution of ANN models inputs, measured with 

Olden and Jackson’s (2002) RIx value method, seemed to vary according to pattern 

typology and dataset. For variation in pattern typology, different variables can 
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contribute positively or negatively in terms of the probability of the presence of each 

typology. There were only two cases in the Terra-i ANN model where the top ranked 

variables were the same (MPAR contributing positively for diffuse extensive and 

intensive patterns and MPAR contributing negatively for geometric and multidirectional 

patterns). Overall, variables such as PSSD and density-related metrics (edge density and 

patch density) contributed poorly to the classification of all pattern typologies for both 

Terra-i and GFC best ANN models. In contrast, MPAR tended to have more marked effect 

(positive or negative) on the probability of the presence of each pattern typology. 

Regarding the proposed computed fractal-like metrics (denoted as D and D_PLAND in 

Figure 16), these seemed to be promissory for deforestation pattern typologies studies 

due to their relevant contribution to target outputs classification using ANNs models, 

particularly for the diffuse extensive and geometric patterns.  

For variation in dataset type, without considering the contribution rank order, 

ability to distinguish positive and negative loads from all inputs was essentially the same 

between both Terra-i and GFC’s best ANN models. This variation was accepted in all 

pattern typologies except for the multidirectional pattern, in which inputs such as 

PSCOV, PD and LSI had a positive effect in Terra-i’s ANN model as opposed to a negative 

effect for GFC’s ANN model.  

 

4.1.4 Model use 

Figure 16 and 17 present maps of the spatial distribution of four pattern typologies 

using the best ANN models for the Terra-i and GFC datasets, respectively.  A visual 

inspection of these maps indicates that the dominant pattern typology in both datasets 

in the study area belonged to the diffuse-related patterns, extensive and intensive 

typologies. The former typology predominated the Terra-i forest/non-forest grid-based 

objects. In contrast, the latter was highly associated with the GFC forest/non-forest grid-

based objects. Additionally, it can be observed that a set of grid-based objects classified 

as diffuse intensive pattern in the Terra-i map (southeast side) were associated with the 

geometric pattern in the GFC map.  

Table VII summarises the total amount of grid-based objects (both unlabelled and 

training sets) classified under the four deforestation spatial pattern typologies identified 

using the best ANN models with a grid size of 30720 m created from the Terra-i and GFC 

forest/non-forest maps. This table also details the percent of grid-based objects with 
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Figure 17. Distribution of deforestation spatial patterns types using the best ANN model at a grid size of 30720 m from forest/non-forest 

Terra-i maps in the study area (central side). Right side consists of map insets in six random locations. Multi directional, geometric, diffuse 

intensive and diffuse extensive pattern training sets are denoted using blue italic letters as mo, g, di and de, respectively, for all maps. 
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Figure 18. Distribution of deforestation spatial pattern types using the best ANN model at a grid size of 30720 m from forest/non-forest 

GFC maps in the study area (central side). Right side consists of map insets in six random locations. Multi directional, geometric, diffuse 

intensive and diffuse extensive pattern training sets are denoted using blue italic letters as mo, g, di and de, respectively, for all maps.
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and without spatial agreement between deforestation typologies mapped from both 

datasets. Overall, grid-based objects classified from both Terra-i and GFC datasets 

agreed that diffuse-related typologies are the most predominant in the study area 

(97.9% and 81.4%, respectively), followed by the geometric pattern (1.3% and 14.2%, 

respectively) and multidirectional (0.8% and 4.3%, respectively).  

      

Table VII. Distribution of grid-based objects (includes training sets) and agreement in 

terms of proportion of four deforestation stages for Terra-i and GFC datasets mapped 

using the best ANN models (30720 m grid size).  

 

Pattern 

typology 

Total number (and 

proportions) of grid-objects 

classified by dataset 

Distribution (%) of grid-objects with 

and without spatial agreement by 

deforestation type 

Terra-i GFC In agreement Without agreement  

Diffuse 

extensive 

5840 

(73.1%) 

3147  

(37.8%) 

2819  

(33.3%) 

 

- 

 

- 

 

- 

 

- 

 

Diffuse 

intensive 

1978 

(24.8%) 

3629 

(43.6%) 

805 

(9.5%) 

Geometric 106 

(1.3%) 

1182 

(14.2%) 

63 

(0.7%) 

Multidirectional 60 

(0.8%) 

357 

(4.3%) 

47 

(0.6%) 

Total 7984 8315 3734 (46.77%) 4249 (53.23%) 

 

Regarding the spatial agreement of mapped typologies between datasets, less than half 

(46.77%) of total overlapped grid-based objects presented common pattern typologies. 

The diffuse extensive pattern was the typology with the highest spatial agreement 

between Terra-i and GFC classified grid-based objects, followed by the diffuse intensive, 

geometric and multidirectional patterns. Although omitted from Table VII due to the 

many possible combinations of spatial disagreement, the diffuse extensive vs. diffuse 

intensive presented in the Terra-i and GFC (or its inverse) was the most common case of 

disagreement, at 33.2% of all overlapping objects. 

A basic assessment of model use over the classified grid-based objects indicated 

that the GFC ANN model with a grid size of 30720 m had a slightly higher true 
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performance in terms of overall average accuracy (0.800) and Kappa value (0.733) than 

the Terra-i ANN model, which had average values of 0.772 and 0.696 for the same 

metrics (Table VIII).  

 

Table VIII. Total number and distribution of grid-based objects with and without spatial 

agreement on deforestation stages between the two datasets, assessed by grid size. 

Deforestation stage types with no spatial agreement are denoted by a hyphen (-). 

 

Repetition  

Overall accuracy Kappa value 

Terra-i GFC Terra-i GFC 

Repetition 1 0.783 0.825 0.711 0.767 

Repetition 2 0.775 0.750 0.700 0.667 

Repetition 3 0.758 0.825 0.678 0.767 

Total 0.772 0.800 0.696 0.733 

 

According to confusion matrices generated from the Terra-i and GFC ANN model 

evaluations (Appendix 6), confusions between pattern typologies may vary by dataset. 

Overall, for both dataset models the diffuse extensive typology had the highest chance of 

being discriminated with regard to the remaining patterns, with some instances of 

confusion with the diffuse intensive typology. For the diffuse intensive pattern from the 

GFC model, confusions were equally distributed among the remaining patterns. This 

result was different for the Terra-i ANN model, in which this pattern was mostly 

confused with the geometric pattern. The geometric pattern was most often confused 

with the multi directional pattern in the Terra-i ANN model. In contrast, the multi 

directional pattern was more often confused with the diffuse intensive pattern in the 

GFC ANN model. Although the multi directional pattern seemed to be fully discriminated 

by the Terra-i ANN model (values closer to the 30 samples validated), it was confused 

with the geometric pattern. This confusion was true for the GFC ANN model as well. 
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5 

Discussion 

 

5.1 Fractal analysis approach 

According to Al-Haddam et al. (2010), fractal techniques can favour analyses related to 

the spatial complexity and information content of multi-scale remote sensing data due to 

the fractal’s principle of self-similarity. In this way, multiple spatial and temporal 

resolutions of remote sensing data could be compared and evaluated based on fractal 

measurements. In this research, the fractal dimension allowed for comparison of  

different deforestation stages previously established by Sun et al. (2014). Implemented 

initially for multi-temporal LANDSAT-based forest/non-forest maps, Sun et al.’s (2014) 

bottom-up method using a fixed-grid scan strategy appeared to be also feasible as a 

means to compute fractal dimension and thus characterise and compare multiple 

deforestation stages from remote sensing datasets such as Terra-i and GFC. Moreover, 

the study of FD behaviour under multiple grid sizes and datasets allowed characterizing 

its sensitivity to both sources. 

First, in agreement with previous findings by Sun et al. (2014) and related 

studies (Sun and Southworth, 2013b; Sun et al., 2013), this research found that the 

number of grid-based objects representing each deforestation stage was affected by the 

grid size (extent). Coarse grid sizes (122,880 m and 61,440 m) were limited to certain 

stages, whereas the finest grid size (15,360 m) contains all stages described by Sun et al. 

(2014). Due to its strong relation with the spatial fill capacity of a target class, the FD can 

be sensitive to increases or decreases in the extent as was previously discussed by Sun 

and Southworth (2013b), who obtained different FD values depending on multiple 

extents placed over their study area.  

Second, although changes can not be completely attributed to spatial resolution 

of the Terra-i and GFC datasets due to side effects of other features of the datasets’ 

detection methodologies (e.g. inputs, algorithm and processing), it was found that 30 m 

GFC grid-based objects contained a higher proportion of type 2 and type 3 stages of 

deforestation (or FD between 1.00 to 1.64) than 240 m Terra-i grid-based objects. This 

behaviour agreed with Al-Haddam et al.’s (2010) results, where multiscale remotely 

sensed data (250m MODIS, 30m Landsat and 4m IKONOS) was used to characterise 
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forest canopies (tree crowns) in Guatemala using fractal analyses. The authors found 

that FD values were highest for the finest spatial resolution (4 metres) and lowest for 

the coarsest spatial resolution (250 metres). The authors claimed that this result can be 

explained by the greater detail (complexity) that can be captured within an area at the 

finest resolution, unlike larger pixel sizes that decrease the complexity of the image as 

individual clumps of the target class are assimilated into larger blocks.   

Finally, in practical terms for the study area, according to the aggregated dataset 

period (2004-2013) the fractal dimension values extracted and deforestation stages 

adopted showed that forest changes were spatially disperse, with most of them 

belonging to the initial deforestation stages (type I and type II) for all grid sizes. This 

association was reinforced due to a dominant behaviour of these stages in the spatial 

overlapping analyses between Terra-i and GFC grid-based objects. Additionally, less 

predominant but relevant in the target region was the presence of deforestation type 3 

(metastatic growth). This result indicates that in some zones of the Amazon rainforest 

recent deforestation has compacted as clearings start to agglomerate.   

 

5.2 The mining land-use patterns-based approach 

5.2.1 Exploratory analysis of input variables in training sets 

The exploratory analysis of fifteen (thirteen FRAGSTAT and two fractal-like) metrics 

used as inputs in the KDD approach for deforestation patterns demonstrated that values 

can fluctuate or remain constant depending on grid size and dataset. Moreover, this step 

was fundamental for detecting (and subsequently confirming by sensitivity analysis) a 

variable's contribution to discriminating the target deforestation pattern typologies.  

 Results were not always consistent with the mining deforestation pattern 

research conducted by Saito (2011), which is the only previous research that fully 

reports the exploratory analysis performed over a set of FRAGSTAT-like metrics. 

Supported by results from Wu (2004), the author initially concluded that the ED and 

MPS metrics did not vary by grid size. Although this behaviour was true for ED in all 

patterns, it disagreed for MPS, occurring only for the diffuse-related pattern typologies. 

Other metrics without effects by grid size according to this research included those 

related with patch area dispersion (PSSD and PSCOV), shape-related metrics (AWMSI 

and LSI) and perimeter and area relations metrics (MPFD, AWMPFD and MPAR). 
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According to Saito (2011), robust metrics that are not affected by changes in the extent 

are highly relevant for discriminating deforestation typologies at multiple scales. 

Regarding the discriminating capacity of the metrics assessed, most of them 

discriminated at least one pattern typology from the remaining typologies. Area-related 

(CA and PLAND), fractal dimension (D), shape-related (MSI) and area-perimeter related 

(AWMPFD) metrics seemed to discriminate all four patterns, suggesting their feasibility 

for incorporation in the data mining procedures.  This result did not agree with Saito 

(2011) who reported ED, MPS and PSSD were the only metrics that presented different 

median values among all pattern typologies. On the other hand, in agreement with 

Saito’s (2011) research, it was found that area-weighted metrics such as AWMPFD and 

AWMSI provided better discrimination results than the raw metrics (MPFD and MSI). 

Complementary to the Saito’s (2011) findings, the set of fractal-like metrics were 

useful for discriminating deforestation spatial patterns. In this research, FD values were 

more distributed along the normalised range (0 and 1) for all patterns than their 

corresponding area-like metrics (CA and PLAND).  These slight differences may confirm 

Encarnação et al.’s (2012) results, which pointed out that FD is a measure of space-filling 

capacity, not a measure of area. Nevertheless, in order to remove any area side-effect 

within FD, the ratio variable between FD and PLAND showed that this proposed metric 

could potentially work for discriminating the diffuse extensive pattern typology. 

Finally, comparing the effect of dataset type, the only set of metrics that seemed 

to remain invariant when the dataset changed in all pattern typologies were the area-

related metrics describing patches (MSI, PSSD and PSCOV). For the rest, the median 

values changed for more than three or all four (D, LSI, AWMPFD, MPAR) patterns or less 

than two patterns (CA, PLAND, PD, ED, MSI, AWMSI, MPFD). For this research, it is not 

possible to determine a either dataset due to the caveat that they are differentiated not 

only by this property but also by other features of their detection methodology. 

 

5.2.2 Model evaluation  

Overall, the multilayer perceptron ANNs structures assessed proved statistically 

superior to the C4.5 decision tree-like data algorithm in terms of Kappa median values 

for mapping deforestation patterns in the Amazon rainforest using either the Terra-i 

(except at the grid size of 61440 m) or GFC dataset. Although the model construction is 

less time efficient for ANNs than C4.5 models, this constraint can be compensated for 
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with the latest advances in CPU hardware which permit more efficient model 

construction using parallel processing (Long and Gupta, 2008), as was performed in this 

research.  Another consideration that may explain the higher performance in ANNs 

compared to C4.5 was the step of looking for optimal sets of parameters in the former, 

while in the latter only the default value of its main parameters (confidence limit) was 

used. Castro et al (2013, p. 237) stated that robust machine learning projects in general 

stress the necessity of improving the expected performance of a learning algorithm at 

least for a few or all parameters if the aim is to find an optimal model. 

Levin (1992) as cited by Sun et al (2014) claimed, “There is no single correct 

scale or level at which to describe a system, nor does that mean all scales serve equally 

well”. This statement agrees with previous mining pattern reference studies (Gavak, 

2011; Saito, 2011; Saito et al., 2011; De Oliveira, 2014) that have pointed out the 

relevance of defining an optimal unit of analysis (extent) that ensures consistent pattern 

characterisation and mapping. In this research, it was determined that the 30720 m grid 

size may be the best extent to analyse and map the four deforestation patterns described 

for both Terra-i and GFC forest/non-forest maps. At the second best performance 

ranking for either overall accuracy or Kappa values, ANN models with a grid size of 

15360 m could also have an acceptable performance (not assessed) for mapping the 

deforestation patterns identified. In contrast, models generated using grid sizes of 

61440 m and 122880 m seemed unfeasible, particularly when ANNs models are 

implemented.         

According to Alsakran et al. (2014), achieving a near optimal ANN for a specific 

task requires prior knowledge of the domain problem and deep understanding in choice 

of network parameters such as weights, hidden layers size and learning rate, among 

others. In this research, the grid-search procedure with iterative k-fold cross validation 

supported understanding the complexity (best parameter combinations) of ANNs for 

pattern mapping analyses. The best combination of ANN parameters (hidden nodes 

layer and weight decay) and others post-fitted features (total weights and convergence 

value) tended to vary slightly between grid sizes and datasets, except for the Terra-i 

selected combinations for ANN models with grid sizes of 30720 m and 122880 m. These 

combinations had considerably higher values than the remaining best ANN models 

generated. The higher values can be directly associated with complex structures that 

usually have drawbacks such as longer time spent in ANN training (Gnana Sheela and 
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Deepa, 2013) and the trend of memorising noise in the dataset (Augusto and Shapiro, 

2007, p. 116), thus tending towards over-training. 

Finally, the implementation of the k-fold cross validation resampling method, 

besides iteratively validating ANN models created from training sets, was also useful for 

identifying ANN model variance. While the mining deforestation patterns reference 

studies from Saito (2011) and Gavak (2011) used an iterated Monte Carlo approach, 

other previous studies on small data sets (Beleites and Salzer, 2008; Beleites et al., 

2014) found that resampling strategies like the repeated/iterated k-fold cross validation 

are most appropriate. The values of the bias and variance for Monte Carlo and k-fold 

cross validation methods were previously discussed by Burman (1989), who refers to 

the former method as repeated-learning testing-model.  

 

5.2.3 Model sensitivity analysis  

Determining variable importance was a key step in this research because it allowed 

going beyond the “black box”, as ANNs typically have been denoted in comparison to 

other data mining algorithms like decision trees. The results with the adopted sensitivity 

analysis method successfully ranked the 15 input variables (normalised FRAGSTAT and 

fractal-like metrics) by pattern typology and dataset. Results suggested that FRAGSTAT-

like metrics such as patch size standard deviation (PSSD) may be omitted for future 

studies using the same ANN architectures established at the grid size of 30720 m for 

mapping all pattern typologies identified for Terra-i and GFC forest/non-forest grid-

based objects. This finding disagrees with results from Saito (2011) using a C4.5 

classifier, who claimed that this metric was relevant for discriminating the deforestation 

spatial patterns identified. This disagreement may result from the algorithms used to 

determine the importance of each variable between ANN and C4.5 classifiers.  

Part of the main findings of this research were to check the contribution of the 

fractal dimension and derived ratio variable with percentage of land to the output 

targets (patterns) in the best ANN models. The sensitivity analyses suggest the 

feasibility of their incorporation for future incoming analyses about deforestation 

spatial pattern mapping using data mining techniques. The addition of this set of metrics 

also indicated that further inputs (FRAGSTAT or fractal-like metrics) used to describe 

deforested landscapes may be explored and assessed. Turner (2005) stated that no 

single metric can adequately capture the pattern on a given landscape. In this way, and 
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particularly for future pattern analyses using data mining techniques, a set of metrics 

can be selected that minimize redundancy while capturing the desired qualities (Riitters 

et al., 1995).  

 

5.2.4 Model use  

The maps detailing the distribution of deforestation pattern typologies in the study 

region (Figure 18 and 19) contribute to findings from previous studies (see for example 

Mulligan, 2014) that concluded similar differences in the spatial distribution between 

Terra-i and GFC deforestation detections.  

Although Beleites et al. (2013) suggested that “well working classifiers need to be 

validated with at least 75 test cases to obtain confidence intervals that draw practical 

conclusions about the model”, in this research this recommendation was not possible 

due to limitations in the classified observations, particularly for the multi directional 

pattern from the Terra-i ANN model. Considering this caveat, performance assessments 

of the Terra-i and GFC ANNs models with a limited number of samples (30) indicated 

good results (average Kappa values of 0.70 and 0.73, respectively) according to the 

ranges suggested by Monserud and Leemans (1992). It is important to note that Kappa 

values obtained by the resampling technique from surrogate ANN models (using 

training sets) were higher than the true model performance, suggesting optimistic bias 

from the surrogates. Additionally, the slightly better Kappa values in the GFC ANN model 

seemed to indicate its reliability for mapping and describing the distribution of the 

spatial pattern typologies in the study region.  

The confusion matrices analyses provided a better understanding of the ANN 

models’ discrimination capacity. The diffuse extensive patterns were more easily 

discriminated than the other patterns, which resulted in greater chances of confusion. 

The heterogeneity (multiple shapes sizes and distribution) of non-forest objects in the 

fixed grids could be the main cause of confusion among the remaining typologies, as was 

determined by Saito (2011).  The same author stated that certain patterns can represent 

transition deforestation stages of other patterns and thus it may be difficult to 

completely discriminate pattern typologies. For instance, in this research  diffuse 

intensive and multi directional patterns could be related to each other, with the latter 

considered a transition phase of the former. 
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Finally, in practical terms for the study area, the classified Terra-i and GFC grid-

based objects using the best ANN models pointed out a similar conclusion obtained with 

the fractal analysis approach. Initial deforestation stages, denoted as diffused-related 

typologies (extensive and intensive), tended to dominate under the mining approach. 

The spatial overlapping analyses between classified Terra-i and GFC classified grid-

based objects, besides strengthening the identification of this dominance, also permitted 

the conclusion that the geometric pattern is largely distributed in the region in 

comparison with the multi directional pattern. It is important to highlight that although 

the mining method apparently produced similar results to the fractal analysis approach, 

the former allowed finding an optimal extent (in this research a grid size of 30720 m) 

for analysing the deforestation patterns from both Terra-i and GFC datasets. 

Additionally, the mining approach favoured the identification of potential agents of 

forest change assigned initially to each pattern typology described. 
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6 

Conclusions 

  

From the 2004-2013 aggregated forest/non-forest maps constructed from MODIS-based 

Terra-i and Landsat-based Global Forest Change deforestation datasets, the fractal 

analysis and data mining methodological frameworks implemented in this research 

permitted the mapping of different deforestation spatial stages and patterns in the 

Amazon humid forest. Both frameworks agreed in the use of the fixed non-overlapping 

grids strategy, in this case four increasing grid sizes (15360 m, 30720 m, 61440 m and 

122880 m), which permitted extraction of framework-specific information. The 

resulting frameworks were reported, analysed and evaluated considering the effects of 

dataset type and extent (grid size). 

Results from the fractal analysis framework, which was based on the box-

counting method with the bottom up approach initially described by Sun et al. (2014) 

for computing the fractal dimension from LANDSAT-based forest/non-forest maps, 

appeared feasible as a means to characterise five deforestation stages (or ranges of 

fractal dimension values) using multiple fixed grid sizes over the datasets used. The 

number of grid-based objects representing each deforestation stage was affected by the 

grid size (extent), with coarse grid sizes (122,880 m and 61,440 m) limited to certain 

stages and the finest grid size (15,360 m) containing all five stages. Additionally, 

although changes could not be completely attributed to spatial resolutions of 

deforestation datasets due to side effects of others features of their detection 

methodologies (i.e inputs, algorithm and processing), it was found than GFC grid-based 

objects contained a higher proportion of advanced stages of deforestation (or FD values 

between 1.00 to 1.64) than Terra-i objects. 

Regarding the data mining framework, adapted from earlier works by the 

Brazilian National Institute for Space Research (INPE) (Silva et al. 2011), analysis 

suggested the suitability of ANNs in comparison to the traditional C4.5 decision tree 

algorithm. Additionally, as well as the addition of fractal-like metrics extracted from a 

fractal analysis methodological framework as inputs to models built, besides the 

traditional landscape ecology metrics used in previous references studies.  
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In comparison with the fractal analysis method, the data mining method involved 

more robust modelling processes (data preprocessing, model construction, model 

evaluation, model sensitivity analysis and model use) that consequently permitted 

identification of optimal extent(s) or grid size(s) for mapping the identified pattern 

typologies using fifteen landscape-related metrics (thirteen FRAGSTAT-like and two 

fractal-like metrics) per deforestation dataset. Overall, the ANNs performed better than 

the C4.5 algorithm according to the model's performance metrics (Kappa and overall 

accuracy values). The surrogate model assessments with the true performance 

assessments of the best ANN model classified grid-based objects indicated that the GFC 

dataset with a grid size of 30720 m can produce the most accurate results for mapping 

the four patterns described in the Amazon rainforest region. Supported by the 

exploratory analysis of model inputs, the sensitivity analysis indicated that the fractal-

like metrics seemed to be useful inputs in pattern mapping research using ANNs due to 

their contribution to the target outputs from the best ANN models analysed. The same 

analysis also indicated that FRAGSTAT-like metrics such as patch size standard 

deviation (PSSD) may be omitted for future studies using the same best ANN 

architectures indicated in this research.  

Finally, both fractal and data mining methods suggested the dominance of initial 

stages of deforestation, or patterns described as dispersed and/or clustered distributed 

deforested areas. Less common but also relevant in the target region was the presence 

of the more developed stages of deforestation (type 3) or pattern typologies such as 

geometric in the fractal analysis and data mining approaches, respectively. This result 

indicates that in some parts of the Amazon rainforest recent deforestation has started to 

compact as clearings start to agglomerate in medium and large shapes. In terms of 

agents of forest change, the most dominant pattern typologies point to spontaneous and 

small agricultural colonisations as the main drivers of recent forest-change dynamics in 

the study area. 
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7 

Limitations and future research  

 

Although this research is the first to report the differences and similarities in feasibility 

between two methodological frameworks (fractal analysis and data mining) for mapping 

the spatial stages and patterns of recent deforestation datasets, there are some 

limitations and complementary research needed to produce conclusive information for 

decision making in forested areas at the regional scale.  

 The use of aggregated forest/non-forest maps from recent deforestation datasets 

may have the caveat that some pattern typologies are not well represented in each area 

analysed due to lack of information of past events of deforestation outside of the 

datasets’ detection periods. For instance, there could be diffuse-like grid-based objects 

that can be located on developed areas and thus some associations between agents of 

forest change and pattern typology, particularly diffuse-related types, may not be 

appropriate. A similar issue can occur with the fractal analysis approach, wherein 

deforestation stages (fractal dimension ranges) need to be reevaluated for adjusting 

them to datasets providing recent deforestation detections such as Terra-i and GFC. 

 In terms of the feasibility of data mining models, there are several pathways that 

can strengthen their potential to discriminate and map deforestation spatial patterns as 

a follow-up to FF-MLP ANN models. First, as corroborated by the sensitivity analysis, the 

addition of new model inputs such as fractal-like metrics can be relevant to discriminate 

the output targets (patterns typologies). It is thus suggested to explore more spatial 

landscape heterogeneity measurements such as FRAGSTAT-like (both at class and 

landscape level) and fractal-related metrics (i.e. lacunarity) in pattern mapping research 

using data mining techniques. Second, from the knowledge discovery perspective, 

although this research reported ANN input contributions and best parameter 

combinations according to the Kappa value using the iterative k-fold cross validation 

method,  for providing useful information for decision making purposes it will be 

important to visualise and share the ANN configurations in an easy-to-understand way 

(see for example Dias et al., 2012), as well as decision tree algorithms (Stiglic et al., 

2012). Next, the quality of the classification process depends greatly on the 

representativeness and sufficiency of the amount of the labelled data used to generate a 
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classifier, a fact that can be considered one of the main limitations of the data mining 

framework of this research. For this issue, it is suggested to investigate learning curves 

that permit finding a sufficient level of labelled samples, as was performed by Beleites et 

al. (2013), or to implement semi-supervised methods that can use both labelled and 

unlabelled data. The use of additional unlabelled data has been shown to offer 

significant improvements in comparison to classifiers generated only on the basis of 

labelled data (Gabrys and Petrakieva, 2004). The balanced sampling strategy 

implemented for model building and validation may limit the amount of validation 

samples and thus the classifiers’ potential performance. Other sampling strategies such 

as using imbalance datasets (Chawla, 2005) should be considered, as the representative 

areas for certain patterns (such as multi directional) are smaller than other patterns 

such as the diffuse-related types. 

 Finally, in regard to the software and packages used to implement the 

methodological frameworks, their performance was improved with parallel processing. 

It is suggested to explore others languages more efficient than R, such as JAVA or C, 

which may contain libraries with faster processing than R-based packages, particularly 

for performing fractal dimension extraction and model building procedures. 
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Appendix 1. KCL Ethics Screening and Risk Assessment Forms  
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Appendix 2. Representative grid-based objects for deforestation spatial pattern typologies in three out of four fixed grid sizes. 
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Appendix 3A. Description of the selected set of metrics by conceptual category 

(Neel et al., 2004) used the mining land-use patterns-based approach. Their 

meaning was adapted to the research context (non-forest as the target class; and 

grid-based objects at multiple fixed grid sizes as units of analysis or landscape). 

 

FRAGSTAT-like Area/Density/Edge category metrics 

● Class area (CA) is the sum of the area of all non-forest patches in a grid-based object. 

It is useful to compare non-forest surfaces of multiple grid-based objects with the 

same extent (a fixed grid size); 

● Percentage of landscape (PLAND) reflects the contribution of the non-forest patches 

in terms of area on a grid-based object. PLAND is an appropriate measure for 

comparison non-forest surfaces of multiple grid-based objects among landscapes of 

varying sizes (i.e multiple fixed grid sizes); 

● Patch density (PD) indicates ratio of number of patches by class area, it facilitates 

comparisons among landscapes of varying sizes (multiple fixed grid sizes); 

● Edge density (ED) is the total length of the patch edge per unit area within each 

landscape (grid-based object). ED increases with forest disturbance, it is a direct 

measure of forest fragmentation. It is useful to compare non-forest edges of multiple 

grid-based objects with the same extent (a fixed grid size); 

● Mean patch size (MPS) is another measure of forest fragmentation. Patch types with 

smaller MPS might be considered more fragmented. A given MPS value can refer 

either to patches of the same size or to patches of very different sizes; 

● Patch size standard deviation (PSSD) and Patch Size Coefficient of Variation (PSCV) 

are variability metrics and indicate aspects related to landscape heterogeneity (grid-

based object). Thus, grid-based objects with greater PSSD and PSCV are more 

heterogeneous and grid-based objects with lower PSSD and PSCV are more uniform. 

 

FRAGSTAT-like Shape category metrics 

● Landscape shape index (LSI) captures the complexity of all non-forest patches 

boundaries in a grid-based object by calculating a normalized ratio of their perimeter 

to their area. LSI equals 1 when non-forest patches are in average maximally compact 

and increases without limit as their shapes becomes more irregular; 
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● Mean shape index (MSI) is the average perimeter to area ratio for the non-forest 

class. As LSI metric, MSI provides a relative measurement of shape complexity; 

● Area-weighted mean shape index (AWMSI) has the same calculation as MSI, excepted 

is weighted by the size of its patches. The particularity about AWMSI is that larger 

patches are weighted more heavily than smaller patches in calculating the average 

patch shape; 

● Mean patch fractal area dimension (MPFD) reveals the relationship between shape 

and area of grid-based object constituted by non-forest patches. MPFD measures the 

average shape complexity of all non-forest patches within the grid-based object. It 

ranges from 1 to 2, with 1 meaning Euclidian geometric shapes such as circles and 

squares, and 2 meaning a very complex patch shape.  

● Area-weighted patch fractal area dimension (AWMPFD) has the same calculation as 

MPFD, excepted is weighted by the size of its patches. This improves the measure of 

class patch forest fragmentation because the structure of smaller patches is often 

determined more by image pixel size than by characteristics of natural features found 

in the landscape (Herold, 2004). AWMPFD has the same range of values and 

interpretation as MPFD.   

● Mean perimeter-area ratio (MPAR) is the mean value of the perimeter/area ratio for 

all non-forest patches constituting a grid-based object. This indicator expresses the 

complexity of the non-forest patches’ elements.  

 

Fractal-like metrics 

● Fractal dimension (D) reveals the spatial fill capacity, or the extent to which non-

forest areas can occupy a grid-based object.  

● Ratio fractal dimension by percentage of non-forest in the landscape, is a empirical 

metric to cancel any proportion or areal effect contained in the raw fractal dimension 

metric. 

 

 

 



 71 

Appendix 3B. FRAGSTAT and fractal-like metrics extracted over the non-forest class grid-based objects for implementing the 

mining land-use patterns-based approach. See further description of symbols and abbreviations in metrics formulas at the end 

of table. Source of FRAGSTAT-like metrics features: Batistella (2001) and Saito et al. (2011). 

Metric Metric type Formula Range (and units) 

Class area  

(CA) 

FRAGSTAT-like  

 

CA > 0, without limit (ha) 

Landscape percentage  
(PLAND)  

FRAGSTAT-like 

  

 

0 < PLAND ≤ 100  

(percentage)  

Patch density  

(PD) 

FRAGSTAT-like 

  
 

PD > 0 (Number per 100 ha) 

Edge density 

(ED) 

FRAGSTAT-like 

  

 

ED ≥ 0, without limit (m ha-1)  

Largest shape index 

(LSI) 

FRAGSTAT-like 

  

 

LSI ≥ 1, without limit 

(adimensional) 
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Mean patch size 

(MPS) 

FRAGSTAT-like 

  

 

MPS ≥ 0, without limit  

(ha) 

Patch size standard deviation 
(PSSD) 

FRAGSTAT-like 

  

 

PSSD ≥ 0, without limit 

(ha) 

Patch size coefficient variation 
(PSCOV)  

FRAGSTAT-like 

  
 

PSCOV ≥ 0, without limit 

(percentage)  

Mean shape index  
(MSI)  
 

FRAGSTAT-like 

  
 

MSI ≥ 1, without limit 

(adimensional) 

Area-weighted mean shape 
index  
(AWMSI)  

FRAGSTAT-like 

  
 

AWMSI ≥ 1, without limit 

(adimensional) 

Mean patch fractal area 
dimension 
(MPFD)  

FRAGSTAT-like 

 

1 ≤ MPFD ≤ 2 

(adimensional) 

 

Area-weighted patch fractal 
area dimension 
(AWMPFD)  
 

FRAGSTAT-like 

 

1 ≤ AWMPFD ≤ 2 

(adimensional) 
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Mean perimeter area ratio 
(MPAR)  

FRAGSTAT-like 

 

MPAR ≥ 0, without limit 

(m m-2) 

 

Fractal dimension (D) Fractal-like   0 ≤ D ≤ 2 

(adimensional) 

Ratio Fractal dimension by 

proportion of the landscape 

occupied by patch type (class)  

(DPi) 

Fractal-like 
 

D ≥ 0.2  

(adimensional) 

αij  = area (m2) of patch j of class i 

eik = total length (m) of edge in landscape between patch types (classes) i and k; includes landscape boundary segments involving patch type  

e”ik = total length (m) of edge in landscape between patch types (classes) i and k; includes the entire landscape boundary and background 

edge segments, regardless of whether they represent the true edge 

ni (n) = number of patches in the landscape of patch type (class) i 

m = number of patches types in the landscape, excluding the landscape border if present 

m’ = number of patches types in the landscape, including the landscape border if present 

Pi = proportion of the landscape occupied by patch type (class) i; 

A = total landscape area (m2) 

Nk = number of boxes used in the box-counting technique to compute fractal dimension 

εK = length (m) of the boxes used in the box-counting technique to compute fractal dimension 
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Appendix 4. Screenshots of the main R programming codes regarding to data 

mining modelling framework. The codes for the fractal analysis framework can be 

requested directly to Sun et al. (2014).  

Part 1A: Code snippet for model building the C4.5 models  
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Part 1B: Code snippet for building the ANN models  
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Part 2: Code snippet for identifying best models 
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Part 3: Code snippet for the sensitivity analysis 
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Part 4: Code snippet for the model use step 
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Part 5: Code snippet for assessing the true models performance 
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Appendix 5. Exploratory analysis performed over inputs used in data mining.  

The class area (CA) and landscape percentage (PLAND) metrics showed similar 

behaviours (Figure 1), with different median values for all pattern typologies within 

each grid size. The multidirectional pattern, besides having the largest median value, 

also showed the closest median values between datasets. 

Although part of the same category, median values among pattern typologies for the 

patch density (PD) metric were not notably different, except for the diffuse extensive pattern. 

Median values were similar between the diffuse extensive and multi directional pattern 

training sets. Additionally, the statistical dispersion between the upper and lower quartiles 

(interquartile range or IQR) was larger for the diffuse extensive pattern, particularly for the 

GFC training sets. In regard to the extent of the grid, this metric maintained, in general, a 

constant median among all grid sizes. The Terra-i training sets presented slightly lower values 

than GFC only for the multi directional and diffuse extensive training sets.  

For the edge density (ED), there were marked differences in median for contrasting 

pattern typologies such as multi directional and diffuse extensive for both datasets. In 

contrast, the geometric and diffuse intensive pattern training sets presented closer median 

values. This behaviour was more predominant in the Terra-i training sets, where diffuse 

intensive patterns presented the largest IQR in comparison with the remaining pattern 

typologies within the same dataset. In terms of grid size, median values of this metric only 

increased or decreased for multi directional and geometric pattern training sets, respectively, 

when these patterns were analysed from coarser to finer grid sizes. 

The pair of fractal-like metrics, the fractal dimension (D) and ratio of fractal 

dimension by non-forest proportion (D-PLAND), were added into the area category due to the 

association of the former with the spatial filling of a target class (non-forest) in a landscape. 

Although the D metric showed a similar behaviour to CA and PLAND, the IQR of each 

training set was lower in comparison with the FRAGSTAT-like metrics. Regardless of grid 

size the D metric was almost uniform with few median fluctuations in the multi 

directional pattern. The Terra-i training sets showed higher overall medians than GFC. 

The behaviour of the D-PLAND metric was the opposite of the previously discussed 

metrics; the largest values were held by the diffuse extensive training sets for all grid 

sizes. For the same pattern, this metric showed a larger IQR in comparison with the 

remaining pattern typologies.  
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Figure 1. Boxplots showing the distribution of six normalised (0 to 1) input variables (CA, 

PLAND, PD, ED, LSI and MPAR) in relation to the area/density/edge conceptual category 

extracted from non-forest class grid-aggregated objects by grid size, pattern typology and 

dataset. Multidirectional, geometric, diffuse intensive and extensive patterns are denoted at 

the Y-axis as MO, G, DI, DE, respectively, after grid size. 



 89 

The behaviours of the other six metrics, which included area-related and shape-related 

metrics, are illustrated in Figure 2. For the former group, patch size statistics such as the 

media and dispersion are described. In the case of the mean patch size (MPS) metric, the  

largest median values were in general given by the multidirectional pattern training sets.  

As grid size became finer, lower values of this metric were obtained. In addition, there 

was not a dominant trend of higher or lower MPS values between datasets.  Regarding 

the standard deviation (PSSD) and coefficient of variation (PSCOV), calculated as part of 

the patch size dispersion statistics, these agreed that multidirectional and geometric 

pattern training sets were more heterogeneous due to their large variability as 

compared to the diffuse-related pattern types. These differences in heterogeneity tended 

to be more marked for PSCOV, which had a uniform median among all grid sizes. 

The median of the mean shape index (MSI) metric, which reflects the shape 

complexity (vertices), was higher for the multidirectional training sets than for the 

remaining patterns. This behaviour was consistent for both datasets, except for the 

diffuse intensive pattern from the Terra-i training sets, which had medians closer to or 

greater than geometric pattern medians within the same dataset. In terms of grid size, 

MSI was sensitive to the extent of analysis unit for both datasets, except for the diffuse 

extensive pattern from the GFC training sets which was uniformly distributed. 

The area-weighted mean shape index (AWMSI), which, like MSI, also reveals the 

shape complexity but assigns heavier weighting to large patches, confirmed that the 

multidirectional pattern training sets were more complex than the other patterns. 

Although the same order of lower values as the MSI metric was maintained for the 

remaining patterns, their variability was less marked than for MSI. Regarding grid sizes, 

AWMSI was in general constant, with a slight trend of higher values in the coarsest size. 

Although median values of the GFC training sets were higher for the multidirectional 

pattern than the Terra-i medians, the opposite was true for the remaining grid sizes. 

For the landscape shape index (LSI), this presented slight differences between 

patterns and datasets from multi direction to diffuse intensive, except for the diffuse 

intensive training sets. The median statistic was not altered by changes in the grid size 

for the multi directional and diffuse intensive patterns for either datasets. In contrast, 

this metric seemed to be affected by the extent of analysis unit when considering the 

geometric and diffuse intensive patterns, especially for the GFC dataset. 
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Figure 2. Boxplots showing the distribution of normalised (0 to 1) area-related (MPS, PSSD 

and PSCV) and shape-related (MSI, AWMSI and LSI) metrics extracted from non-forest class 

grid-aggregated objects by grid size by pattern typology by dataset. Multidirectional, 

geometric, diffuse intensive and extensive patterns are denoted at the Y-axis as MO, G, DI, 

DE, respectively after grid size. 
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The behaviour of a last set of 3 metrics, grouped together due to their calculation using 

perimeter and area relations, is explored in Figure 3. Overall, there was not a clear effect 

of grid size for these metrics, but there were marked behaviours within patterns and 

datasets. Median values of mean patch fractal area dimension (MPFD) were different 

between patterns and varied by dataset. For the Terra-i training sets, medians from 

geometric pattern were higher than the remaining patterns. On the other hand, for GFC 

training sets there was a gradual decrease from the multi directional to diffuse extensive 

pattern. Like the MPFD, the area-weighted patch fractal area dimension (AWMPFD) 

presented a gradual decrease, however training sets had less IQR than MPFD, 

particularly for the diffuse extensive patterns. Finally, the mean perimeter-area ratio 

(MPAR) showed differences and similarities between patterns by dataset. For Terra-i 

training sets, median values at all grid sizes for multi directional and diffuse intensive 

patterns were closer than for the remaining patterns. In contrast, for GFC training sets 

there was a gradual increase from the multi directional to diffuse extensive patterns.  

 

Figure 3. Boxplots showing the distribution of normalised (0 to 1) perimeter-area related 

(MPFD, AWMPFD, MPAR) metrics extracted from non-forest class grid-aggregated objects by 

grid size, pattern typology and dataset. Multidirectional, geometric, diffuse intensive and 

extensive patterns are denoted at the Y-axis as MO, G, DI, DE, respectively, after grid size. 
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Appendix 6. Confusion matrices for Terra-i (upper) and GFC (bottom) ANN models 

evaluations. Highlighted numbers indicate grid-based object agreement between 

predictions and expert observations.  

TERRA-I 

 

Pattern 

Repetition 1  Repetition 2  Repetition 3 

de di g m de di g m de di g m 

Diffuse extensive 

(de) 

27 2 1 0 28 2 0 0 24 6 0 0 

Diffuse intensive 

(di) 

2 18 10 0 5 18 5 2 4 18 7 1 

Geometric (g) 1 0 20 9 0 2 20 8 0 0 23 7 

Multidirectional 

(m) 

0 0 1 29 0 0 3 27 0 1 3 26 

Total number (n) 30 20 32 38 33 22 28 37 28 25 33 34 

 

GFC 

 

Pattern 

Repetition 1  Repetition 2  Repetition 3 

de di g m de di g m de di g m 

Diffuse extensive 

(de) 

30 0 0 0 26 4 0 0 25 5 0 0 

Diffuse intensive 

(di) 

2 24 1 3 5 20 3 2 4 22 1 3 

Geometric (g) 2 5 22 1 0 2 23 5 0 3 26 1 

Multidirectional 

(m) 

0 1 6 23 0 1 8 21 0 0 4 26 

Total number (n) 34 30 29 27 31 27 34 28 29 30 31 30 

 

 

 

 

 


